OPC Unified Architecture
iv
Draft 1.00
OPC Unified Architecture
1
Draft 1.00

[image: image1.wmf]

F

O

U

N

D

A

T

I

O

N

®

OPC Unified Architecture
Draft Specification
Discovery
Version 1.00
November 8, 2007
	Specification Type
	Industry Standard Specification
	Comments:
	 COMMENTS * MERGEFORMAT

	
	
	
	

	Title:
	OPC Unified Architecture
Discovery
	Date:
	November 8, 2007

	
	
	
	

	Version:
	Draft 1.00
	Software
	MS-Word

	
	
	Source:
	OPC UA Part 12 - Discovery Draft 1.00.03 Specification.doc

	
	
	
	

	Author:
	OPC Foundation
	Status:
	Draft

	
	
	
	

CONTENTS

Page

11
Scope

12
Reference Documents

13
Terms, definitions, and conventions

13.1
OPC UA Part 1 terms

13.2
OPC UA Part 2 terms

23.3
OPC UA Part 4 terms

23.4
OPC UA Discovery terms

23.4.1
DirectoryService

23.4.2
DiscoveryServer

23.4.3
LocalDiscoveryServer (LDS)

23.4.4
WellKnownUrl

23.5
Abbreviations and symbols

24
The Discovery Process

24.1
Overview

34.2
Simple Discovery

44.3
Normal Discovery

44.4
Hierarchical Discovery

54.5
Directory Service Discovery

65
Deployment and Configuration

65.1
Firewalls and Discovery

85.2
Resolving References to Remote Servers

95.3
Security

96
Local DiscoveryServer

96.1
Overview

106.2
Registration

106.3
Discovery

106.4
Dedicated Machines

116.5
Auditing

117
DirectoryServices

117.1
UDDI

127.2
LDAP

FIGURES
3Figure 1 – The Simple Discovery Process

4Figure 2 – The Normal Discovery Process

5Figure 4 – The Hierarchical Discovery Process

5Figure 5 – The UDDI or LDAP Discovery Process

6Figure 6 – Discovering Servers Outside a Firewall

7Figure 7 – Discovering Servers Behind a Firewall

8Figure 3 – Using a Discovery Server with a Firewall

9Figure 8 – Following References to Remote Servers

11Figure 9 – UDDI Registry Structure

12Figure 10 – Sample LDAP Hierarchy

TABLES

10Table 1 – WellKnownUrls for the Local DiscoveryServer

Table 2 – UDDI tModels
11
Table 3 – LDAP Object Class Schema
12

1 Scope
This document describes how UA Clients and Servers interact with DiscoveryServers when used in different scenarios. It specifies the requirements for the LocalDiscoveryServer and how to discover UA applications when using in common DirectoryServices.
2 Reference Documents

[UA Part 1] OPC UA Specification: Part 1 – Concepts
http://www.opcfoundation.org/UA/Part1/
[UA Part 2] OPC UA Specification: Part 2 – Security Model
http://www.opcfoundation.org/UA/Part2/
[UA Part 3] OPC UA Specification: Part 3 – Address Space Model
http://www.opcfoundation.org/UA/Part3/
[UA Part 4] OPC UA Specification: Part 4 – Services
http://www.opcfoundation.org/UA/Part4/
[UA Part 5] OPC UA Specification: Part 5 – Information Model
http://www.opcfoundation.org/UA/Part5/
[UA Part 6] OPC UA Specification: Part 6 – Mappings

http://www.opcfoundation.org/UA/Part6/
[UA Part 7] OPC UA Specification: Part 7 – Profiles
http://www.opcfoundation.org/UA/Part7/
3 Terms, definitions, and conventions

3.1 OPC UA Part 1 terms

The following terms defined in [UA Part 1] apply.

1) Certificate

2) Client

3) Communication Stack

4) Message

5) Profile

6) Server

7) Service

8) Service Set

9) Session

3.2 OPC UA Part 2 terms

The following terms defined in [UA Part 2] apply.

1) SecureChannel

2) PrivateKey

3) PublicKey

4) X.509 Certificate

3.3 OPC UA Part 4 terms

The following terms defined in [UA Part 4] apply.

1) ApplicationDescription

2) Endpoint
3) EndpointDescription
4) HostName
5)
6) FindServers

7) GetEndpoints

8) RegisterServer

9) ApplicationUri
10)
11)
3.4 OPC UA Discovery terms

3.4.1 DirectoryService

A DirectoryService is a software application — or a set of applications — that stores and organizes information about network resources. Applications on the network can discover resources by using APIs defined by the DirectoryService.
3.4.2 DiscoveryServer

A DiscoveryServer is a server that maintains a list of other Servers that are available on the network. A DiscoveryServer provides one discovery Endpoint for each transport Profile that it supports.
3.4.3 LocalDiscoveryServer (LDS)

The LocalDiscoveryServer is a DiscoveryServer that maintains a list of all Servers available on the machine that it runs on. A LocalDiscoveryServer has one discovery Endpoint for each transport Profile that it supports. Every machine with a Server installed should have a LocalDiscoveryServer running.
3.4.4 WellKnownUrl
A WellKnownUrl is a predefined URL that can be used to find the LocalDiscoveryServer on a machine..
3.5 Abbreviations and symbols

API
Application Programming Interface

UA
Unified Architecture
LDS
Local Discovery Server
TLS
Transport Layer Security
DNS
Distributed Name Server

UDDI
Universal Description, Discovery and Integration
LDAP
Lightweight Directory Access Protocol

4 The Discovery Process
4.1 Overview
The discovery process allows the Clients to first find Servers on the network and then discover how to connect to them. Once a Client has this information it can save it and use it to connect directly to the Server again without going through the discovery process. If the Client finds that it cannot connect then that could mean the Server configuration has changed and the Client needs to go through the discovery process again.
Servers must allow themselves to be discovered by Clients by implementing a discovery Endpoint and registering themselves with the LocalDiscoveryServer running on the same machine.

The URL for a discovery Endpoint must provide all of the information that the Client needs to connect to the Endpoint. This implies that no security can be applied to the message, however, some implementations may use transport layer security where the secure protocol is identified in the URL (e.g. HTTPS).
A discovery Endpoint must provide the FindServers and GetEndpoints services defined in [UA Part 4].
Clients use the FindServers service request a list of known Servers from the discovery Endpoint of a DiscoveryServer. Clients use the GetEndpoints service defined in [UA Part 4] to request a lists of supported Endpoints from the discovery Endpoint of a Server.
Servers use the RegisterServer service defined in [UA Part 4] to tell the LocalDiscoveryServer that they are available. Servers may call this service when they are installed, however, they must call this service when they start and continue to call it periodically as long as they are running and accepting client connections. Administrators must be able to disable Server registration because they may not want some Servers to be discoverable. By default, all Servers must be configured to call RegisterServer.
If a Server goes offline and can no longer be accessed it then it must call RegisterServer service and tell the LocalDiscoveryServer that it is no longer available.
The are a number of common discovery scenarios which are described in the clauses below.
4.2 Simple Discovery

Clients do not need to use a DiscoveryServer if they have the URL for a discovery Endpoint provided by a Server. In this situation the Client connects directly to the Server and requests the EndpointDescriptions using the GetEndpoints service. The Client can then choose one of the Endpoints returned and use the information to call the OpenSecureChannel service and establish a secure communication channel. Once a secure communication channel exists the Client calls CreateSession and may then access all other UA services.
The discovery process for this scenario is illustrated in Figure 1.

[image: image2.emf]GetEndpoints()

CreateSecureChannel()

Client Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

Figure 1 – The Simple Discovery Process
4.3 Normal Discovery

In many cases the Clients will not know what Servers exist but they do know what machines might have UA Servers on them. In this situation the client will look for the LocalDiscoveryServer on the machine using the WellKnownUrls for the LocalDiscoveryServer that it is configured to use.

If the Client finds a LocalDiscoveryServer it calls the FindServers service and optionally passes in list of ServerUris that it is interested in finding. The LocalDiscoveryServer will return a list of ApplicationDescriptions which contain the discovery Endpoints for each Server.
The Client would then call the GetEndpoints service for one of the Servers returned and request the EndpointDescriptions for that Server. The Client will then be able to use that information to create secure communication channel with the Server.

The discovery process for this scenario is illustrated in Figure 2.

[image: image3.emf]GetEndpoints()

CreateSecureChannel()

Client Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

Local

Discovery Server

FindServers()

ServerDescription[]

Figure 2 – The Normal Discovery Process

Dedicated systems with exactly one Server installed do not need to have a separate LocalDiscoveryServer application running. In this case, the Server could use the well known URLs for its own discovery Endpoint. This configuration would not change any of the interactions from the perspective of the Client.
4.4

4.5 Hierarchical Discovery

Sometimes a Client will have access to all of the Servers on a network but will not have any way to know what machines are on a network. In this situation DiscoveryServers can be organized into hierarchies that allow Clients to discover the machines on a network by using a DiscoveryServer that it knows about other DiscoveryServers on the network.
Each ApplicationDescription record returned by the FindServers service indicates whether the application is a regular Server or a DiscoveryServer. If the server is a DiscoveryServer then the Client must call the FindServers service again to discover any Servers known by lower level DiscoveryServer.
The discovery process for this scenario is illustrated in Figure 3.

[image: image5.emf]GetEndpoints()

Client

Local

Discovery Server

Discovery Server

FindServers()

ServerDescription[]

Server

EndpointDescription[]

FindServers()

ServerDescription[]

Discovery

Endpoint

Figure 3 – The Hierarchical Discovery Process

It is up to the implementer of the higher level DiscoveryServer to decide how it is configured with knowledge of the other DiscoveryServers on the network.

4.6 Directory Service Discovery
Many organizations will deploy DirectoryServices such as LDAP or UDDI to manage resources available on their network. A Client can use these services as a way to find Servers by using APIs specific to DirectoryService to query for UA Servers or UA DiscoveryServers available on the network. The Client would then use the URLs for discovery Endpoints stored in the DirectoryService to request the EndpointDescriptions necessary to connect to an individual servers.

The discovery process for this scenario is illustrated in Figure 4 .

[image: image6.emf]GetEndpoints()

CreateSecureChannel()

Client Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

UDDI or LDAP

Server

Query()

BusinessEntity/Object[]

Figure 4 – The UDDI or LDAP Discovery Process
4.7 Deployment and Configuration

4.8 Firewalls and Discovery

Many systems will have multiple networks that are isolated by firewalls. These firewalls will frequently hide the network addresses of the hosts behind them and unless the Administrator has specifically configured the firewall to allow external access. In some networks the Administrator will place machines with externally available Servers outside the firewall as shown in Figure 5.

[image: image7.emf]Client

Firewall

Server

Publicly Visible Network

Client

Internal Network

Server

Internet

Figure 5 – Discovering Servers Outside a Firewall
In this configuration Servers running on the publicly visible network will have the same network address from the perspective of all Clients which means the URLs returned by DiscoveryServers are not affected by the location of the Client.

In other networks the Administrator will configure the firewall to allow access to selected Servers as shown in Figure 6.

[image: image8.emf]Client

Firewall

Client

Internal Network

Server

Internet Discovery Server

Figure 6 – Discovering Servers Behind a Firewall
In this configuration the address of the Server that the Internet Client sees will be different from the address that the internal Client sees. This means the Server’s discovery Endpoint would return incorrect URLs to the Internet Client (assuming it was configured to provide the internal URLs).

Administrators can correct this problem by configuring the Server to use multiple HostNames. A Server that has multiple HostNames must look at the EndpointUrl passed to the GetEndpoints or CreateSession services and return EndpointDescriptions with URLs that use the same HostName. A Server with multiple HostNames must also return an ApplicationInstanceCertificate that specifies the HostName used in the URL it returns. An Administrator may create a single Certificate with multiple HostNames or assign different Certificates for each HostName that the Server supports.
Administrators may also wish to set up a DiscoveryServer that is configured with the ApplicationDescriptions for Servers that are accessible to external Clients. This DiscoveryServer would have to substitute its own Endpoint for the DiscoveryUrls in all ApplicationDescriptions that it returns when a Client calls FindServers. This would tell the Client to call the DiscoveryServer back when it wishes to connect to the Server. The DiscoveryServer would then request the EndpointDescriptions from the actual Server as shown in REF _Ref150975483 \h
. At this point the Client would have all the information it needs to establish a secure channel with the Server behind the firewall.

[image: image9.emf]GetEndpoints()

CreateSecureChannel()

Client Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

Discovery Server

FindServers()

ServerDescription[]

GetEndpoints()

EndpointDescription[]

Figure 7 – Using a Discovery Server with a Firewall
In this example, the DiscoveryServer outside of the firewall allows the Administrator to close off the Server’s discovery Endpoints to every Client other than the DiscoveryServer. The Administrator could eliminate that hole as well if it stored the EndpointDescriptions on the DiscoveryServer.
The DiscoveryServer could also be replaced with a DirectoryService that stores the ApplicationDescriptions and/or the EndpointDescriptions for the Servers behind the firewalls.
4.9 Resolving References to Remote Servers
4.9.1
The UA address space supports references between Nodes that exist in different Server address spaces. These references are specified with a NodeId that includes the URI of the Server which owns the Node. A Client that wishes to follow a reference to an external Node must map the ApplicationUri onto an EndpointUrl that it can use. A Client can do this by using a DiscoveryServer that knows about the Server. The process of connecting to a Server containing a remote Node is illustrated in Figure 8

[image: image10.emf]Client

Server 1 Discovery Server Server 2

Browse

ExpandedNodeId

(ServerUri=‘Server 2’)

Find Discovery Server

FindServers (ServerUri = ‘Server 2’)

ApplicationDescription

GetEndpoints

EndpointDescriptions

CreateSession

Figure 8 – Following References to Remote Servers
The Client can only find a remote Server if it has been configured with the locations of DiscoveryServers on the network.

When configuring a Client to use a DiscoveryServer an Administrator may specify a set of ServerUris that are handled by that DiscoveryServer. If the DiscoveryServer does not specify any ServerUris then the Client should treat it as a default DiscoveryServer that may know about all Servers.

The DiscoveryServers know to the Client could be replaced by a DirectoryService or a reference to the discovery Endpoint of the remote Server. The latter example might be used in small networks with a few well known Servers.
Security

Clients must beware of rogue DiscoveryServers that might direct them to rogue Servers. Clients can use the SSL/TLS server certificate to verify that the DiscoveryServer is a server that they trust.
In any case, Clients must always verify that it trusts the Server Certificate and that the EndpointUrl matches the HostNames specified in the Certificate before it creates a Session with a Server. After it creates a Session it must look at the EndpointDescriptions returned by the Server and verify that it used the best security possible and that the Server’s Certificate matches the one that the Client used to connect.

4.9.2

4.10

5 Local DiscoveryServer
5.1 Overview
Each machine with UA Servers installed should have a LocalDiscoveryServer installed. This is a DiscoveryServer that exposes one or more Endpoints which support the FindServers and GetEndpoints services defined in [UA Part 4]. In addition, the LocalDiscoveryServer must provide at least one Endpoint which implements the RegisterServer service.

The Endpoints for the LocalDiscoveryServer use WellKnownUrls which a Client or Server can construct from the HostName. These WellKnownUrls could change from system to system. For this reason, it is recommended that UA applications maintain a list of WellKnownUrls that they try in sequence much like the way Distributed Name Servers (DNS) are used today.
The WellKnownUrls are specified for each transport Profile defined in Table 1.
Table 1 – WellKnownUrls for the Local DiscoveryServer
	Profile
	URL
	Notes

	XML Web Services
	http://hostname/UADiscovery/
	Must support UA Binary and UA XML Encodings.

	Native Binary
	opc.ua://hostname:4840
	Does not support SSL/TLS

	XML Web Services
	http://hostname:52601/UADiscovery/
	Must support UA Binary and UA XML Encodings.

Alternate if port 80 is not available for use by a UA application.

The Endpoints for the LocalDiscoveryServer may require SSL/TLS. If this is the case the Client or Server must use its application instance certificate as the SSL/TLS client certificate.

5.2 Registration
The Endpoints that implement the RegisterServer service must reject attempts to register Servers running on a different machine. This ensures that invalid registrations cannot be created by unauthorized applications connecting via the network.
The Server must provide a ApplicationUri when it registers. The LocalDiscoveryServer must replace any existing record associated with ApplicationUri. The LocalDiscoveryServer may save the registration information in a persistent datastore that it reads whenever the LocalDiscoveryServer starts.

The LocalDiscoveryServer must validate any semaphore file provided by the Server before accepting the registration. If this file disappears the LocalDiscoveryServer must remove the registration from any persistent datastore.

If the Server indicates that it is offline then the LocalDiscoveryServer must not return it in any FindServers response, however, the it should not delete it from any persistent datastore.
5.3 Discovery
The Endpoints that implement the FindServers and GetEndpoints services are usually accessible to any application on the network. The LocalDiscoveryServer may use the Client certificate supplied with the SSL/TLS connection to deny access to unauthorized applications.

The LocalDiscoveryServer must return an empty list whenever the GetEndpoints service is called because it is does not implement a SessionEndpoint.
The LocalDiscoveryServer checks the status of each registration before returning it in the FindServers response. The LocalDiscoveryServer does not return the Server is marked as offline or if the semaphore file is missing.

5.4 Dedicated Machines
Some machines will never have more than one Server installed. If this is the case then that Server can also act as the LocalDiscoveryServer for the machine by using the WellKnownUrls for its discovery Endpoint.

When the FindServers service is called the Server returns a single record describing itself. When the GetEndpoints service is called the Server returns its Endpoints.
5.5 Auditing

LocalDiscoveryServers must have an audit log that tracks changes to its configuration. For example, each time a Server record is added, changed or removed this event must be logged. The structure of the audit events and the auditing framework is defined in [UA Part 4].
6 DirectoryServices
6.1 UDDI
6.2 UDDI registries contain businessEntities which provide one or more businessServices. The businessServices have one or more bindingTemplates. bindingTemplates specify a physical address and a Server Interface (called a tModel). Figure 9 illustrates the relationships between the UDDI registry elements.

[image: image11.emf]Logical Node

(businessEntity)

UA Server

(businessService)

DiscoveryEndpointUrl

(bindingTemplate)

UA Server Interface

(tModel)

UA Discovery Server

(businessService)

DiscoveryEndpointUrl

(bindingTemplate)

UA Discovery Interface

(tModel)

Figure 9 – UDDI Registry Structure
This specification defines standard tModels which must be referenced by businessServices that support UA. The standard UA tModels shown in Table 2.

Table 2 – UDDI tModels

	Name
	domainKey
	uuidKey

	Server
	uddi:server.ua.opcfoundation.org
	uddi:AA206B41-EC9E-49a4-B789-4478C74120B5

	DiscoveryServer
	uddi:discoveryserver.ua.opcfoundation.org
	uddi:AA206B42-EC9E-49a4-B789-4478C74120B5

The name of the businessService elements should be the same as the ApplicationName for the UA application. The serviceKey must be the ApplicationUri. At least one bindingTemplate must be present and the accessPoint must be the URL of the discovery Endpoint for the UA server identified by the serviceKey. Servers with multiple discovery Endpoints would have multiple bindingTemplates
A UDDI registry will generally only contain UA servers, however, there are situations where the administrators cannot know what Servers are available at any given time and will find it more convenient to place a DiscoveryServer in the registry instead.
6.3 LDAP
LDAP servers contain objects organized into hierarchies. Each object has an objectClass which specifies a number of attributes. Attributes have values which describe an object. Figure 10 illustrates a sample LDAP hierarchy which contains entries describing UA servers.

[image: image12.emf]Root

(objectClass=top)

Company

(objectClass=organization)

Machine X

(objectClass=device)

Machine Y

(objectClass=device)

UA Server

(objectClass=OPCUA-Server)

UA Discovery Server

(objectClass=OPCUA-Server)

IsDiscoveryServer=False IsDiscoveryServer=True

Figure 10 – Sample LDAP Hierarchy
UA applications are stored in LDAP servers as entries with the UA defined objectClasses associated with them. The schema for the objectClasses defined for UA are shown in Table 3.

Table 3 – LDAP Object Class Schema
	Name
	Name
	Type
	OID

	Server
	OPCUA-Server
	Structural
	1.2.840.113556.1.8000.2264.1.12.1

	
ApplicationUri
	OPCUA-Server-ApplicationUri
	Name
	1.2.840.113556.1.8000.2264.1.12.1.1

	
ServerName
	OPCUA-Server-ServerName
	String (Required)
	1.2.840.113556.1.8000.2264.1.12.1.2

	
IsDiscoveryServer
	OPCUA-Server-IsDiscoveryServer
	Boolean (Required)
	1.2.840.113556.1.8000.2264.1.12.1.3

	
DiscoveryUrl
	OPCUA-Server-DiscoveryUrl
	String (Required)
	1.2.840.113556.1.8000.2264.1.12.1.4

Administrators may extend the LDAP schema by adding new attributes.

�Add a Mantis Issue regarding the IIS 5.1 bug that prevents the LDS from using this URL.

_1225097922.ppt

GetEndpoints()

Client

Local

Discovery Server

Discovery Server

FindServers()

ServerDescription[]

Server

EndpointDescription[]

FindServers()

ServerDescription[]

Discovery

Endpoint

_1255810491.ppt

Client

Server 1

Discovery Server

Server 2

Browse

ExpandedNodeId

(ServerUri=‘Server 2’)

Find Discovery Server

FindServers (ServerUri = ‘Server 2’)

ApplicationDescription

GetEndpoints

EndpointDescriptions

CreateSession

_1255877680.ppt

GetEndpoints()

CreateSecureChannel()

Client

Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

Discovery Server

FindServers()

ServerDescription[]

GetEndpoints()

EndpointDescription[]

_1255882542.ppt

Client

Firewall

Client

Internal Network

Server

Internet

Discovery Server

_1255812279.ppt

Logical Node

(businessEntity)

UA Server

(businessService)

DiscoveryEndpointUrl

(bindingTemplate)

UA Server Interface

(tModel)

UA Discovery Server

(businessService)

DiscoveryEndpointUrl

(bindingTemplate)

UA Discovery Interface

(tModel)

_1255812336.ppt

Root

(objectClass=top)

Company

(objectClass=organization)

Machine X

(objectClass=device)

Machine Y

(objectClass=device)

UA Server

(objectClass=OPCUA-Server)

UA Discovery Server

(objectClass=OPCUA-Server)

IsDiscoveryServer=False

IsDiscoveryServer=True

_1225197287.ppt

GetEndpoints()

CreateSecureChannel()

Client

Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

Local

Discovery Server

FindServers()

ServerDescription[]

_1255809639.ppt

Client

Firewall

Server

Publicly Visible Network

Client

Internal Network

Server

Internet

_1225097975.ppt

GetEndpoints()

CreateSecureChannel()

Client

Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

UDDI or LDAP

Server

Query()

BusinessEntity/Object[]

_1225097726.ppt

GetEndpoints()

CreateSecureChannel()

Client

Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

_1225097849.ppt

GetEndpoints()

CreateSecureChannel()

Client

Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

Gateway

Discovery Server

FindServers()

ServerDescription[]

GetEndpoints()

EndpointDescription[]

_1175523667.doc

F O U N D A T I O N

®

